搜索
题目内容
数列{a
n
}的前4项分别是0,3,8,15,归纳猜想,其通项为( )。
试题答案
相关练习册答案
a
n
=n
2
﹣1
练习册系列答案
启东中学中考总复习系列答案
中学英才教程系列答案
教学大典 系列答案
学考A加卷中考考点优化分类系列答案
发散思维新课堂系列答案
明日之星课时优化作业系列答案
同步首选全练全测系列答案
学效评估同步练习册系列答案
高中新课标同步用书全优课堂系列答案
实验探究报告册系列答案
相关题目
数列{a
n
}满足的前n项和S
n
=2n-a
n
,n∈N
*
(1)计算数列{a
n
}的前4项;
(2)猜想a
n
的表达式,并证明;
(3)求数列{n•a
n
}的前n项和T
n
.
已知等差数列{a
n
}的公差为-1,且a
2
+a
7
+a
12
=-6,
(1)求数列{a
n
}的通项公式a
n
与前n项和S
n
;
(2)将数列{a
n
}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b
n
}的前3项,记{b
n
}的前n项和为T
n
,若存在m∈N
*
,使对任意n∈N
*
总有S
n
<T
m
+λ恒成立,求实数λ的取值范围.
数列{a
n
}的前4项为:1,0-1,0,则下面可作为数列{a
n
}通项公式的为( )
A.a
n
=(-1)
n
(n∈N
*
)
B.
a
n
=sin
nπ
2
(n∈
N
*
)
C.a
n
=(-1)
n+1
(n∈N
*
)
D.
a
n
=cos
nπ
2
(n∈
N
*
)
数列{a
n
}的前4项分别是0,3,8,15,归纳猜想,其通项为
a
n
=n
2
-1
a
n
=n
2
-1
.
(2012•通州区一模)对于数列{a
n
},从第二项起,每一项与它前一项的差依次组成等比数列,称该等比数列为数列{a
n
}的“差等比数列”,记为数列{b
n
}.设数列{b
n
}的首项b
1
=2,公比为q(q为常数).
(I)若q=2,写出一个数列{a
n
}的前4项;
(II)a
1
与q满足什么条件,数列{a
n
}是等比数列,并证明你的结论;
(III)若a
1
=1,数列{a
n
+c
n
}是公差为q的等差数列,且c
1
=q,求数列{c
n
}的通项公式;并证明当1<q<2时,c
5
<-2q
2
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案