题目内容

已知m∈R,f(x)=32x+1+(m-1)(3x+1-1)-(m-3)•3x
(1)m=4时,求解方程f(x)=0;
(2)若f(x)=0有两不等实根,求m的取值范围;
(3)m=4时,若f(x)≥a恒成立,求a的取值范围.
令3x=t,f(x)=32x+1+(m-1)(3x+1-1)-(m-3)•3x=3t2+2mt-m+1.
(1)m=4时,f(x)=3t2+8t-3=0,
解得3x=
1
3
,x=-1
或3x=-3(舍去).
故方程f(x)=0为x=-1.

(2)设y=3t2+2mt-m+1.由题设知该方程有两个根0<t1<t2
△=4m2+12m-12>0
f(0)=-m+1>0
-
2m
6
>0

解得m<-
3+
21
2

(3)m=4时,
∵t=3x>0,
∴y=3t2+8t-3=3(t+
4
3
)
2
-
25
3
>-3,
∵f(x)≥a恒成立,
∴a≤-3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网