题目内容
已知函数f(x)=
若f(2-x2)>f(x),则实数x的取值范围是( )
|
| A、(-∞,-1)∪(2,+∞) |
| B、(-∞,-2)∪(1,+∞) |
| C、(-1,2) |
| D、(-2,1) |
分析:先通过基本函数得到函数的单调性,再利用单调性定义列出不等式,求出不等式的解集即可得到实数x的范围.
解答:解:易知f(x)在R上是增函数,
∵f(2-x2)>f(x)
∴2-x2>x,
解得-2<x<1.
则实数x的取值范围是(-2,1).
故选D.
∵f(2-x2)>f(x)
∴2-x2>x,
解得-2<x<1.
则实数x的取值范围是(-2,1).
故选D.
点评:本题主要考查利用函数的单调性来解不等式,这类题既考查不等式的解法,也考查了函数的性质,这也是函数方程不等式的命题方向,应引起足够的重视.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|