题目内容
【题目】已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线y=
x2的焦点,离心率等于
.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若
=λ1
,
,求证:λ1+λ2为定值.
【答案】
(1)解:设椭圆C的方程为
,则由题意知b=1.∴
.∴a2=5.
∴椭圆C的方程为 ![]()
(2)解:设A、B、M点的坐标分别为A(x1,y1),B(x2,y2),M(0,y0).
又易知F点的坐标为(2,0).
显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是y=k(x﹣2).
将直线l的方程代入到椭圆C的方程中,消去y并整理得(1+5k2)x2﹣20k2x+20k2﹣5=0.∴
.
又∵
.∴ ![]()
【解析】(1)根据椭圆C的一个顶点恰好是抛物线
的焦点,离心率等于
.易求出a,b的值,得到椭圆C的方程.(2)设A、B、M点的坐标分别为A(x1 , y1),B(x2 , y2),设直线l的斜率为k,则直线l的方程是y=k(x﹣2),然后采用“联立方程”+“设而不求”+“韦达定理”,结合已知中
,
,求出λ1+λ2值,即可得到结论.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:
,焦点在y轴:
才能正确解答此题.
【题目】某校高三数学竞赛初赛考试后,对考生的成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…第六组[140,150].图(1)为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人. (Ⅰ)请补充完整频率分布直方图,并估计这组数据的平均数M;![]()
(Ⅱ)若不低于120分的同学进入决赛,不低于140分的同学为种子选手,完成下面2×2
列联表(即填写空格处的数据),并判断是否有99%的把握认为“进入决赛的同学
成为种子选手与专家培训有关”.
| [140,150] | 合计 | |
参加培训 | 5 | 8 | |
未参加培训 | |||
合计 | 4 |
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |