题目内容
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知bcosC=(2a﹣c)cosB. (Ⅰ)求B;
(Ⅱ)若c=2,b=3,求△ABC的面积.
【答案】解:(Ⅰ)由已知及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB﹣sinCcosB. 则sinBcosC+sinCcosB=2sinAcosB.
sin(B+C)=2sinAcosB,
故sinA=2sinAcosB.
因为,在△ABC中,sinA≠0.
所以
,
.
(Ⅱ)由已知及余弦定理得9=4+a2﹣4acosB,
又
,
所以:a2﹣2a﹣5=0,解得:a=1+
,或a=1﹣
(舍去),
所以:S△ABC=
acsinB=
(1+
)×
= ![]()
【解析】(Ⅰ)由已知及正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式化简可得sinA=2sinAcosB.结合sinA≠0.可求cosB,利用特殊角的三角函数值即可求得B的值.(Ⅱ)由已知及余弦定理得a2﹣2a﹣5=0,解得a的值,进而利用三角形面积公式即可得解.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正弦定理:
;余弦定理:
;
;
.
【题目】已知椭圆C:
的短轴长为2
,离心率e=
,
(1)求椭圆C的标准方程:
(2)若F1、F2分别是椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同的两点A、B,求△F1AB的内切圆半径的最大值.
【题目】2016年下半年,锦阳市教体局举行了市教育系统直属单位职工篮球比赛,以增强直属单位间的交流与合作,组织方统计了来自A1 , A2 , A3 , A4 , A5等5个直属单位的男子篮球队的平均身高与本次比赛的平均得分,如表所示:
单位 | A1 | A2 | A3 | A4 | A5 |
平均身高x(单位:cm) | 170 | 174 | 176 | 181 | 179 |
平均得分y | 62 | 64 | 66 | 70 | 68 |
注:回归当初
中斜率和截距最小二乘估计公式分别为
,
.
(1)根据表中数据,求y关于x的线性回归方程;(系数精确到0.01)
(2)若M队平均身高为185cm,根据(I)中所求得的回归方程,预测M队的平均得分(精确到0.01)