题目内容

(2013•绵阳二模)已知函数f(x)=xlnx(x∈(0,+∞)
(I )求g(x)=
f(x+1)
x+1
-x(x∈(-1,+∞))
的单调区间与极大值;
(II )任取两个不等的正数x1,x2,且x1<x2,若存在x0>0使f′(x0)=
f(x2)-f(x1)
x2-x1
成立,求证:x1<x0<x2
(III)己知数列{an}满足a1=1,an+1=(1+
1
2n
)an+
1
n2
(n∈N+),求证:ane
11
4
(e为自然对数的底数).
分析:(Ⅰ)由f(x)求出f(x+1),代入g(x),对函数g(x)求导后利用导函数的符号求出函数g(x)在定义域内的单调区间,从而求出函数的极大值;
(Ⅱ)求出f(x0),代入f′(x0)=
f(x2)-f(x1)
x2-x1
后把lnx0用lnx1,lnx2表示,再把lnx0与lnx2作差后构造辅助函数,求导后得到构造的辅助函数的最大值小于0,从而得到lnx0<lnx2,运用同样的办法得到lnx1<lnx0,最后得到要证的结论;
(Ⅲ)由给出的递推式an+1=(1+
1
2n
)an+
1
n2
说明数列{an}是递增数列,根据a1=1,得到an≥1,由此把递推式an+1=(1+
1
2n
)an+
1
n2
放大得到lnan+1≤lnan+ln(1+
1
2n
+
1
n2
)
,结合(Ⅰ)中的ln(1+x)<x得到lnan+1<lnan+
1
2n
+
1
n2
,分别取n=1,2,3,…,n-1,得到n个式子后累加即可证得结论.
解答:(Ⅰ)解:由f(x)=xlnx(x∈(0,+∞)).
∴f(x+1)=(x+1)ln(x+1)(x∈(-1,+∞)).
则有g(x)=
f(x+1)
x+1
-x
=
(x+1)ln(x+1)
x+1
-x
=ln(x+1)-x,
此函数的定义域为(-1,+∞).
g(x)=
1
x+1
-1=-
x
x+1

故当x∈(-1,0)时,g(x)>0;当x∈(0,+∞)时,g(x)<0.
所以g(x)的单调递增区间是(-1,0),单调递减区间是(0,+∞),
故g(x)的极大值是g(0)=0;
(Ⅱ)证明:由f(x)=xlnx(x∈(0,+∞)),得f(x)=lnx+1,
所以lnx0+1=
f(x2)-f(x1)
x2-x1

于是lnx0-lnx2=
f(x2)-f(x1)
x2-x1
-lnx2-1
=
x2lnx2-x1lnx1
x2-x1
-lnx2-1

=
x1lnx2-x1lnx1
x2-x1
-1=
ln
x2
x1
x2
x1
-1
-1

x2
x1
=t
(t>1),则h(t)=
lnt
t
-1=
ln-t+1
t-1

因为t-1>0,只需证明lnt-t+1<0.
令s(t)=lnt-t+1,则s(t)=
1
t
-1<0

∴s(t)在t∈(1,+∞)上递减,所以s(t)<s(1)=0,
于是h(t)<0,即lnx0<lnx2,故x0<x2
同理可证x1<x0,故x1<x0<x2
(Ⅲ)证明:因为a1=1,an+1=(1+
1
2n
)an+
1
n2
an
,所以{an}单调递增,an≥1.
于是an+1=(1+
1
2n
)an+
1
n2
≤(1+
1
2n
)an+
1
n2
an
=(1+
1
2n
+
1
n2
)an

所以lnan+1≤lnan+ln(1+
1
2n
+
1
n2
)
(*).
由(Ⅰ)知当x>0时,ln(1+x)<x.
所以(*)式变为lnan+1<lnan+
1
2n
+
1
n2

lnak-lnak-1
1
2k-1
+
1
(k-1)2
(k∈N,k≥2),
令k=2,3,…,n,这n-1个式子相加得
lnan-lna1<(
1
21
+
1
22
+…+
1
2n-1
)
+[
1
12
+
1
22
+…+
1
(n-1)2
]

1
2
(1-
1
2n-1
)
1-
1
2
+[1+
1
4
+
1
2×3
+
1
3×4
+…+
1
(n-2)(n-1)
]

=(1-
1
2n-1
)+[1+
1
4
+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n-2
-
1
n-1
)]

=(1-
1
2n-1
)+(1+
1
4
+
1
2
-
1
n-1
)

=
11
4
-
1
2n-1
-
1
n-1
11
4

lnan<lna1+
11
4
=
11
4

所以ane
11
4
点评:本题考查了利用导数研究函数的单调性,考查了通过构造函数,利用函数的单调性和极值证明不等式,训练了累加法求数列的通项公式,考查了利用放缩法证明不等式,是一道难度较大的综合题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网