搜索
题目内容
若不等式ax
2
+(ab+1)x+b>0的解集为{x|1<x<2},则a+b=( )。
试题答案
相关练习册答案
-3或-
练习册系列答案
世纪百通优练测系列答案
世纪百通课时作业系列答案
百分学生作业本题练王系列答案
小学1课3练培优作业本系列答案
中华题王系列答案
优翼学练优系列答案
优加学习方案系列答案
52045模块式全能训练系列答案
钟书金牌新教材全练系列答案
4560课时双测系列答案
相关题目
若不等式ax
2
+4x+a>1-2x
2
对任意实数x均成立,则实数a的取值范围是( )
A、a≥2或a≤-3
B、a>2或a≤-3
C、a>2
D、-2<a<2
若不等式ax
2
+x+a<0的解集为∅,则实数a的取值范围
[
1
2
,+∞)
[
1
2
,+∞)
.
若不等式ax
2
+x+a<0的解集为∅,则实数a的取值范围( )
A.a≤-
1
2
或a≥
1
2
B.a<
1
2
C.-
1
2
≤a≤
1
2
D.a≥
1
2
若不等式ax
2
+ax+a+3>0对x∈
R
恒成立,则a的取值范围是( )
A.(-4,0) B.(-∞,-4)∪(0,+∞)
C.[0,+∞) D.(-∞,0)
若不等式ax
2
+x+a<0的解集为∅,则实数a的取值范围( )
A.a≤-
或a≥
B.a<
C.-
≤a≤
D.a≥
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案