题目内容
已知
=(sinθ,cosθ)、
=(
,1)
(1)若
∥
,求tanθ的值;
(2)若f(θ)=|
+
|,△ABC的三条边分别为f(-
)、f(-
)、f(
),求△ABC的面积.
| a |
| b |
| 3 |
(1)若
| a |
| b |
(2)若f(θ)=|
| a |
| b |
| 2π |
| 3 |
| π |
| 6 |
| π |
| 3 |
(1)∵
=(sinθ,cosθ),
=(
,1),
∥
,
∴sinθ-
cosθ=0,
∴sinθ=
cosθ,
即tanθ=
;
(2)∵
+
=(sinθ+
,cosθ+1),
∴|
+
|=
=
=
,
∴a=f(-
)=
=1,b=f(-
)=
,c=f(
)=
=3,
由余弦定理可知:cosB=
=
=
,
∴sinB=
=
,
则S△ABC=
acsinB=
.
| a |
| b |
| 3 |
| a |
| b |
∴sinθ-
| 3 |
∴sinθ=
| 3 |
即tanθ=
| 3 |
(2)∵
| a |
| b |
| 3 |
∴|
| a |
| b |
(sinθ+
|
5+2
|
5+4sin(θ+
|
∴a=f(-
| 2π |
| 3 |
5+4sin(-
|
| π |
| 6 |
| 5 |
| π |
| 3 |
5+4sin
|
由余弦定理可知:cosB=
| a2+c2-b2 |
| 2ac |
| 1+9-5 |
| 2×1×3 |
| 5 |
| 6 |
∴sinB=
| 1-cos2B |
| ||
| 6 |
则S△ABC=
| 1 |
| 2 |
| ||
| 4 |
练习册系列答案
相关题目