题目内容
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)求出y关于x的线性回归方程
;
(2)试预测加工10个零件需要多少小时?
(注:
=
,
=
-b
)
【答案】(1)
=1.05+0.7x; (2)预测加工10个零件需要8.05小时.
【解析】
(1)先求均值,再根据公式求
以及
,(2)在回归直线方程中令自变量为10,所得函数值为预测结果.
(1)根据表中数据,计算
=
×(2+3+4+5)=3.5,
=
×(2.5+3+4+4.5)=3.5,
=
=0.7,
=
-
=3.5-0.7×3.5=1.05,
∴y关于x的线性回归方程
=1.05+0.7x;
(2)x=10时,计算
=1.05+0.7×10=8.05,
试预测加工10个零件需要8.05小时.
【题目】某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
| 0 |
|
|
|
|
|
|
| |||
| 0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,填写在相应位置,并求出函数
的解析式;
(2)把
的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移
个单位长度,得到函数
的图象,求
的值.
【题目】大连市某企业为确定下一年投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近8年的年宣传费
和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
46.6 | 573 | 6.8 | 289.8 | 1.6 | 215083.4 | 31280 |
表中
,
.
根据散点图判断,
与
哪一个适宜作为年销售量
关于年宣传费
的回归方程类型?(给出判断即可,不必说明理由)
根据
的判断结果及表中数据,建立
关于
的回归方程;
已知这种产品的年利润
与
、
的关系为
.根据
的结果回答下列问题:
年宣传费
时,年销售量及年利润的预报值是多少?
年宣传费
为何值时,年利润的预报值最大?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.