题目内容
在数列{an}中,前n项和为Sn,且Sn=
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,数列{bn}前n项和为Tn,求Tn的取值范围.
| n(n+1) |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| an |
| 2n |
(Ⅰ)当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=
-
=n,经验证,a1=1满足上式.
故数列{an}的通项公式an=n.
(Ⅱ)可知Tn=
+
+
+…+
,
则
Tn=
+
+
+…+
,
两式相减,得Tn-
Tn=
+
+
+…+
-
=1-
-
,
∴Tn=2-
.
由于Tn+1-Tn=
>0,则Tn单调递增,故Tn≥T1=
,
又Tn=2-
<2,
故Tn的取值范围是[
,2).
当n≥2时,an=Sn-Sn-1=
| n(n+1) |
| 2 |
| (n-1)n |
| 2 |
故数列{an}的通项公式an=n.
(Ⅱ)可知Tn=
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
则
| 1 |
| 2 |
| 1 |
| 22 |
| 2 |
| 23 |
| 3 |
| 24 |
| n |
| 2n+1 |
两式相减,得Tn-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n |
| 2n+1 |
| 1 |
| 2n |
| n |
| 2n+1 |
∴Tn=2-
| n+2 |
| 2n |
由于Tn+1-Tn=
| n+1 |
| 2n+1 |
| 1 |
| 2 |
又Tn=2-
| n+2 |
| 2n |
故Tn的取值范围是[
| 1 |
| 2 |
练习册系列答案
相关题目