题目内容
求下列数列的前n项和Sn:| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| n(n+2) |
分析:通过裂项法使
=
(
-
),进而化简求和.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:解:∵
=
(
-
),
∴Sn=
[(1-
)+(
-
)+(
-
)+(
-
)]=
(1+
-
-
).
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
点评:本题主要考查了数列的求和问题.数列求和的方法有裂项法、错位相减法、逆序相加法等,应熟练掌握.
练习册系列答案
相关题目