ÌâÄ¿ÄÚÈÝ
ÒÑÖªµãÁÐB1£¨1£¬b1£©£¬B2£¨2£¬b2£©£¬¡£¬Bn£¨n£¬bn£©£¬¡£¨n¡ÊN?£©Ë³´ÎΪÅ×ÎïÏßy=£¨1£©ÇóÊýÁÐ{an}£¬{cn}µÄͨÏʽ£»
£¨2£©ÊÇ·ñ´æÔÚnʹµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬ÈôÓУ¬ÇëÇó³ön£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÉèÊýÁÐ{
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÀûÓõ¼Êý£¬ÇóµÃµãBn£¨n£¬bn£©×÷Å×ÎïÏßy=
x2µÄÇÐÏß·½³Ì£¬Áîy=0£¬¿ÉµÃan=
£¬¸ù¾ÝµãAn£¬Bn£¬Cn¹¹³ÉÒÔµãBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬¿ÉµÃan+cn=2n£¬ÓÉ´Ë¿ÉÇóÊýÁÐ{an}£¬{cn}µÄͨÏʽ£»
£¨2£©ÈôµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬Ôò|AnCn|=2bn£¬ÓÉ´Ë¿ÉÖª´æÔÚn=2£¬Ê¹µÈÑüÈý½ÇÐÎA2B2C2Ϊֱ½ÇÈý½ÇÐΣ»
£¨3£©
=
=
=
£¨
-
£©£¬´Ó¶ø¿ÉÇóSn=
£¨1-
£©£¬½ø¶ø¿ÉÖª
¡ÜSn£¼
£®
½â´ð£º£¨1£©½â£º¡ßy=
x2£¬¡ày¡ä=
£¬y¡ä|x=n=
£¬
¡àµãBn£¨n£¬bn£©×÷Å×ÎïÏßy=
x2µÄÇÐÏß·½³ÌΪ£ºy-
=
£¨x-n£©£¬
Áîy=0£¬Ôòx=
£¬¼´an=
£»£¨3·Ö£©
¡ßµãAn£¬Bn£¬Cn¹¹³ÉÒÔµãBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬
¡àan+cn=2n£¬¡àcn=2n-an=
£¨5·Ö£©
£¨2£©½â£ºÈôµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬Ôò|AnCn|=2bn?
¡àn=
£¬¡àn=2£¬
¡à´æÔÚn=2£¬Ê¹µÈÑüÈý½ÇÐÎA2B2C2Ϊֱ½ÇÈý½ÇÐÎ £¨9·Ö£©
£¨3£©Ö¤Ã÷£º¡ß
=
=
=
£¨
-
£©£¨11·Ö£©
¡àSn=
£¨1-
+
-
+¡+
-
£©=
£¨1-
£©£¼
ÓÖ1-
ËænµÄÔö´ó¶øÔö´ó£¬
¡àµ±n=1ʱ£¬SnµÄ×îСֵΪ£º
£¨1-
£©=
£¬
¡à
¡ÜSn£¼
£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壬¿¼²éÁÑÏî·¨ÇóÊýÁеĺͣ¬¿¼²é²»µÈʽµÄÖ¤Ã÷£¬¿¼²éÊýÁÐÓë½âÎö¼¸ºÎµÄ×ۺϣ¬ÊôÓÚÖеµÌ⣮
£¨2£©ÈôµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬Ôò|AnCn|=2bn£¬ÓÉ´Ë¿ÉÖª´æÔÚn=2£¬Ê¹µÈÑüÈý½ÇÐÎA2B2C2Ϊֱ½ÇÈý½ÇÐΣ»
£¨3£©
½â´ð£º£¨1£©½â£º¡ßy=
¡àµãBn£¨n£¬bn£©×÷Å×ÎïÏßy=
Áîy=0£¬Ôòx=
¡ßµãAn£¬Bn£¬Cn¹¹³ÉÒÔµãBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬
¡àan+cn=2n£¬¡àcn=2n-an=
£¨2£©½â£ºÈôµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬Ôò|AnCn|=2bn?
¡àn=
¡à´æÔÚn=2£¬Ê¹µÈÑüÈý½ÇÐÎA2B2C2Ϊֱ½ÇÈý½ÇÐÎ £¨9·Ö£©
£¨3£©Ö¤Ã÷£º¡ß
¡àSn=
ÓÖ1-
¡àµ±n=1ʱ£¬SnµÄ×îСֵΪ£º
¡à
µãÆÀ£º±¾Ì⿼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壬¿¼²éÁÑÏî·¨ÇóÊýÁеĺͣ¬¿¼²é²»µÈʽµÄÖ¤Ã÷£¬¿¼²éÊýÁÐÓë½âÎö¼¸ºÎµÄ×ۺϣ¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿