题目内容
等差数列{an} 中,Sn是其前n项和,a1=2008,
-
=2,则S2011的值为
| S2007 |
| 2007 |
| S2005 |
| 2005 |
8080198
8080198
.分析:由
-
=a1+
d-a1-
d=d=2,知a1=2008,由等差数列前n项和公式能求出S2011.
| S2007 |
| 2007 |
| S2005 |
| 2005 |
| 2006 |
| 2 |
| 2004 |
| 2 |
解答:解:∵
-
=a1+
d-a1-
d=d=2,
a1=2008,
∴S2011=2011×2008+
×2=8080198.
故答案为:8080198.
| S2007 |
| 2007 |
| S2005 |
| 2005 |
| 2006 |
| 2 |
| 2004 |
| 2 |
a1=2008,
∴S2011=2011×2008+
| 2011×2010 |
| 2 |
故答案为:8080198.
点评:本题考查等差数列的通项公式和前n项和公式的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目