题目内容

5.△ABC中,$cosA=\frac{{\sqrt{5}}}{5},sinB=\frac{3}{5}$,则cosC=$\frac{2\sqrt{5}}{25}$.

分析 由条件利用同角三角函数的基本关系求得sinA、cosB的值,再利用诱导公式、两角和差的余弦公式求得cosC的值.

解答 解:△ABC中,∵$cosA=\frac{{\sqrt{5}}}{5},sinB=\frac{3}{5}$,∴sinA=$\sqrt{{1-sin}^{2}A}$=$\frac{2\sqrt{5}}{5}$>sinB,∴A>B;
cosB=$\sqrt{{1-sin}^{2}B}$=$\frac{4}{5}$,
则cosC=-cos(A+B)=-cosAcosB+sinAsinB=-$\frac{\sqrt{5}}{5}•\frac{4}{5}$+$\frac{2\sqrt{5}}{5}•\frac{3}{5}$=$\frac{{2\sqrt{5}}}{25}$,
故答案为:$\frac{2\sqrt{5}}{25}$.

点评 本题主要考查同角三角函数的基本关系、诱导公式、两角和差的余弦公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网