题目内容

(1)已知函数m(x)=ax2e-x (a>0),求证:函数y=m(x)在区间[2,+∞)上为减函数.
(2)已知函数f(x)=ax2+2ax,g(x)=ex,若在(0,+∞)上至少存在一点x0,使得f(x0)>g(x0)成立,求实数a的取值范围.
(1)m'(x)=axe-x(2-x),而ax>0,∴当x>2时,m'(x)<0,因此m(x)在[2,+∞)上为减函数.
(2)记m(x)=
ax2+2ax
ex
,则m'(x)=(-ax2+2a)e-x
当x>
2
时,m'(x)<0 当0<x<
2
时,m'(x)>0
故m(x)在x=
2
时取最大值,同时也为最大值.m(x)max=m(
2
)=
2a+2
2
a
e
2

依题意,要在(0,+∞)上存在一点x0,使f(x0)>g(x0)成立.即使m(x0)>1只需m(
2
)>1
2a+2
2
a
e
2
>1∴a>
2
-1
2
e 
2
,因此,所求实数a的取值范围为(
2
-1
2
e 
2
,+∞)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网