ÌâÄ¿ÄÚÈÝ
13£®ÒÑÖªµÈ±ÈÊýÁÐ{an+2}µÄ¹«±Èq=2£¬a1=1£¬ÊýÁÐ{bn}Âú×㣺$\frac{b_n}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+¡+\frac{1}{a_n}$£¨n¡ÊN*£©£®£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Ö¤Ã÷£º$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$£»
£¨¢ó£©ÇóÖ¤£º$£¨1+\frac{1}{b_1}£©£¨1+\frac{1}{b_2}£©¡£¨1+\frac{1}{b_n}£©£¼\frac{3}{2}$£®
·ÖÎö £¨¢ñ£©Í¨¹ýÊýÁÐ{an+2}µÄ¹«±Èq=2¡¢Ê×Ïîa1+2=3£¬¿ÉµÃ${a_n}+2=3¡Á{2^{n-1}}$£¬½ø¶ø¿ÉµÃ½áÂÛ£»
£¨¢ò£©Í¨¹ý$\frac{b_n}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+¡+\frac{1}{a_n}$±äÐμ´µÃ½áÂÛ£»
£¨¢ó£©Í¨¹ý£¨¢ñ£©¡¢£¨¢ò£©¿ÉÖªa1=1¡¢b1=a2=4£¬$\frac{{1+{b_n}}}{{{b_{n+1}}}}=\frac{{{a_{n+1}}}}{{{a_{n+2}}}}$£¬¾¹ý±äÐοɵÃ$£¨1+\frac{1}{b_1}£©£¨1+\frac{1}{b_2}£©¡£¨1+\frac{1}{b_n}£©$=$1+\frac{1}{4}+¡+\frac{1}{{3¡Á{2^{n-1}}-2}}+\frac{1}{{3¡Á{2^n}-2}}$£¬ÀûÓòðÏî·¨¿ÉµÃ$\frac{1}{a_k}=\frac{1}{{3¡Á{2^{k-1}}-2}}$£¼2$£¨\frac{1}{a_k}-\frac{1}{{{a_{k+1}}}}£©$£¨ÆäÖÐk¡ÊN*£©£¬¼ÆËã¼´¿É£®
½â´ð £¨¢ñ£©½â£º¡ßÊýÁÐ{an+2}µÄ¹«±Èq=2£¬Ê×Ïîa1+2=3£¬
¡à${a_n}+2=3¡Á{2^{n-1}}$£¬
¡à${a_n}=3¡Á{2^{n-1}}-2$£»
£¨¢ò£©Ö¤Ã÷£º¡ß$\frac{b_n}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+¡+\frac{1}{a_n}$£¬
¡à$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{1}{a_1}+\frac{1}{a_2}+¡+\frac{1}{{{a_{n+1}}}}$£¬
¡à$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{b_n}{{{a_{n+1}}}}+\frac{1}{{{a_{n+1}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$£¬
¡à$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$³ÉÁ¢£»
£¨¢ó£©Ö¤Ã÷£ºÓÉ£¨¢ñ£©¡¢£¨¢ò£©¿ÉÖª£¬a1=1£¬b1=a2=4£¬
ÓÉ$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$£¬µÃ$\frac{{1+{b_n}}}{{{b_{n+1}}}}=\frac{{{a_{n+1}}}}{{{a_{n+2}}}}$£¬
¡à$£¨1+\frac{1}{b_1}£©£¨1+\frac{1}{b_2}£©¡£¨1+\frac{1}{b_n}£©$=$\frac{{1+{b_1}}}{b_1}•\frac{{1+{b_2}}}{b_2}•\frac{{1+{b_3}}}{b_3}¡\frac{{1+{b_n}}}{b_n}$
=$\frac{{1+{b_1}}}{{{b_1}{b_2}}}•\frac{{1+{b_2}}}{b_3}•\frac{{1+{b_3}}}{b_4}¡\frac{{1+{b_n}}}{{{b_{n+1}}}}•{b_{n+1}}$
=$\frac{1}{b_1}•\frac{a_2}{a_3}•\frac{a_3}{a_4}¡\frac{{{a_{n+1}}}}{{{a_{n+2}}}}•{b_{n+1}}$=$\frac{a_2}{b_1}•\frac{{{b_{n+1}}}}{{{a_{n+2}}}}$=$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}$
=$\frac{1}{a_1}+\frac{1}{a_2}+¡+\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}$£¬
ÓÖ¡ß$\frac{1}{a_1}+\frac{1}{a_2}+¡+\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}$=$1+\frac{1}{4}+¡+\frac{1}{{3¡Á{2^{n-1}}-2}}+\frac{1}{{3¡Á{2^n}-2}}$£¬
¡à$\frac{1}{a_k}=\frac{1}{{3¡Á{2^{k-1}}-2}}$
=$\frac{{3¡Á{2^k}-2}}{{£¨3¡Á{2^{k-1}}-2£©£¨3¡Á{2^k}-2£©}}$
$£¼\frac{{3¡Á{2^k}}}{{£¨3¡Á{2^{k-1}}-2£©£¨3¡Á{2^k}-2£©}}$
=$2¡Á\frac{{£¨3¡Á{2^k}-2£©-£¨3¡Á{2^{k-1}}-2£©}}{{£¨3¡Á{2^k}-2£©£¨3¡Á{2^{k-1}}-2£©}}$
=2$£¨\frac{1}{{3¡Á{2^{k-1}}-2}}-\frac{1}{{3¡Á{2^k}-2}}£©$
=2$£¨\frac{1}{a_k}-\frac{1}{{{a_{k+1}}}}£©$£¨ÆäÖÐk¡ÊN*£©£¬
¡à$\frac{1}{a_1}+\frac{1}{a_2}+¡+\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}$$£¼1+2[£¨\frac{1}{a_2}-\frac{1}{a_3}£©+£¨\frac{1}{a_3}-\frac{1}{a_4}£©+¡+£¨\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}£©]$
=$1+\frac{2}{a_2}-\frac{2}{{{a_{n+1}}}}$
=$1+\frac{2}{4}-\frac{2}{{3¡Á{2^n}-2}}$
$£¼1+\frac{2}{4}=\frac{3}{2}$£¬
¡à$£¨1+\frac{1}{b_1}£©£¨1+\frac{1}{b_2}£©£¨1+\frac{1}{b_3}£©¡£¨1+\frac{1}{b_n}£©£¼\frac{3}{2}$£®
µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏʽ£¬Ç°nÏîºÍ£¬¿¼²é²ðÏî·¨£¬¿¼²é¼ÆËãÄÜÁ¦¡¢Áé»î´¦ÀíÎÊÌâµÄÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮
| A£® | {1} | B£® | {2£¬4} | C£® | {2£¬3} | D£® | £¨1£¬4£© |
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
| A£® | -3 | B£® | -2 | C£® | -1 | D£® | 0 |
| A£® | $\frac{\sqrt{5}}{5}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{2\sqrt{5}}{5}$ | D£® | $\frac{\sqrt{5}}{2}$ |