题目内容

16.已知直线l:kx-y+1=0(k∈R).若存在实数k,使直线l与曲线C交于A,B两点,且|AB|=|k|,则称曲线C具有性质P.给定下列三条曲线方程:
①y=-|x|;   
②x2+y2-2y=0;   
③y=(x+1)2
其中,具有性质P的曲线的序号是②③.

分析 确定直线l:kx-y+1=0(k∈R)过定点(0,1),曲线过定点(0,1),即可得出结论.

解答 解:①y=-|x|与直线l:kx-y+1=0(k∈R)至多一个交点,不具有性质P;  
②x2+y2-2y=0圆心为(0,1),直线l:kx-y+1=0(k∈R)过定点(0,1),故存在k=±2,使直线l与曲线C交于A,B两点,且|AB|=|k|,具有性质P;   
③y=(x+1)2,过点(0,1),直线l:kx-y+1=0(k∈R)过定点(0,1),故存在k,使直线l与曲线C交于A,B两点,且|AB|=|k|,具有性质P.
故答案为:②③.

点评 本题考查曲线与方程,考查新定义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网