题目内容

(1)数列{an}中,a1=1,an+1=an+2n,求通项公式an
(2)数列{an}中,a1=4,an+1=
n+2n
an
,求通项公式an?
分析:(1)将an+1=an+2n移向得出an+1-an=2n,用累加法求通项公式.
(2)将an+1=
n+2
n
an
,变形
an+1
an
=
n+2
n
,用累乘法求通项公式.
解答:解:(1)将an+1=an+2n移向得出an+1-an=2n
当n≥2时,an=(an-an-1  )+(an-1-an-2  )+…+(a2-a1  )+a1
=2n-1+2n-2+…+2+1
=2n-1,当n=1时,也适合.
∴an=2n-1.
(2)由于an+1=
n+2
n
an
,即
an+1
an
=
n+2
n

当n≥2时,an=
an
an-1
an-1
an-2
•…•
a3
a2
a2
a1
•a1
=
n+1
n-1
n
n-2
•…•
4
2
3
1
•4
=
(n+1)•n
2
×4
=2n2+2n,当n=1时,也适合.
∴an=2n2+2n.
点评:本题考查了数列递推公式,累加法求通项公式.形如an-an-1=f(n)且f(n)能求和,均可以用累加法求通项公式.累乘法求通项公式,形如an-an-1=f(n)an-1且f(n)能求积,均可以用累乘法求通项公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网