题目内容

已知函数f(x)=x2(x-3),则f(x)在R上的单调递减区间是______,单调递增区间为______.
导函数f′(x)=3x2-6x=3x(x-2)
令f′(x)>0,可得x<0,或x>2;令f′(x)<0,可得0<x<2
∴函数的单调增区间为(-∞,0),(2,+∞)
函数的单调减区间为(0,2)
故答案为:(0,2);(-∞,0),(2,+∞)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网