题目内容

已知x∈[-1,1],关于x的不等式tan2x-4atanx+2+2a≤0有有限个解,则a的取值是(  )
A.-
tan21+2
2(2tan1+1)
或-
1
2
B.
tan21+2
2(2tan1-1)
或-
tan21+2
2(2tan1+1)
C.
tan21+2
2(2tan1-1)
或-
tan21+2
2(2tan1+1)
或-
1
2
D.-
1
2
或 
tan21+2
2(2tan1-1)
已知x∈[-1,1],关于x的不等式tan2x-4atanx+2+2a≤0有有限个解,tanx∈[-tan1,tan1],
∴令t=tanx∈[-tan1,tan1],可得f(t)=t2-4at+2+2a,对称轴为t=2a,
若△=0,可得△=16a2-8a-8=0解得a=1或-
1
2

当a=1时,f(t)=(t-2)2≤0可得t=2∉[-tan1,tan1],故a=1舍去;
当a=-
1
2
时,f(t)=(t-1)2≤0可得t=1∈[-tan1,tan1],a=-
1
2
满足题意;
若△>0,可得a>1或a<-
1
2

对称轴t=2a,
当a>1时,2a>2,f(t)开口向上,要求f(t)=t2-4at+2+2a,有有限个解
∴f(tan1)=0,只有一个解x=tan1,(tan1)2-4atan1+2+2a=0,解得a=
tan21+2
2(2tan1-1)
>1满足题意,
当-tan1<2a<1时,f(t)<0有无数个解,不满足题意;
当2a≤-tan1时,有f(-tan1)=0,可得,(-tan1)2+4atan1+2+2a=0,解得a=-
tan21+2
2(2tan1+1)
,因为tan1=1.557,
∴-2×
tan21+2
2(2tan1+1)
>-tan1,不满足题意;
综上:a=-
1
2
或a=
tan21+2
2(2tan1-1)

故选D;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网