题目内容
10.设函数f(x)=$\sqrt{1+{2}^{x}+a•{4}^{x}}$(1)若f(x)在区间(-∞,1]有意义,求实数a的取值范围;
(2)若f(x)的定义域是(-∞,1],求实数a的取值范围.
分析 (1)把若f(x)在区间(-∞,1]有意义,转化为x≤1时函数g(x)=1+2x+a•4x≥0恒成立,∴a≥$-(\frac{1}{4})^{x}-(\frac{1}{2})^{x}$,利用配方法求出函数y=$-(\frac{1}{4})^{x}-(\frac{1}{2})^{x}$的最大值得答案;
(2)由1+2x+a•4x≥0,得$(\frac{1}{4})^{x}+(\frac{1}{2})^{x}+a≥0$,结合f(x)的定义域是(-∞,1],可得$lo{g}_{\frac{1}{2}}\frac{-1+\sqrt{1-4a}}{2}=1$,由此求得实数a的值.
解答 解:(1)若f(x)在区间(-∞,1]有意义,
则x≤1时函数g(x)=1+2x+a•4x≥0恒成立,∴a≥$-(\frac{1}{4})^{x}-(\frac{1}{2})^{x}$,
函数y=$-(\frac{1}{4})^{x}-(\frac{1}{2})^{x}$=-$[(\frac{1}{2})^{x}+\frac{1}{2}]^{2}$$+\frac{1}{4}$,
设t=$(\frac{1}{2})^{x}$,则t≥$\frac{1}{2}$,此时函数y=-$(t+\frac{1}{2})^{2}+\frac{1}{4}$在t≥$\frac{1}{2}$上单调递减,
y≤-$(\frac{1}{2}+\frac{1}{2})^{2}+\frac{1}{4}=-\frac{3}{4}$,此时x=1.
∴a≥-$\frac{3}{4}$.
∴实数a的取值范围[-$\frac{3}{4}$,+∞);
(2)由1+2x+a•4x≥0,得$(\frac{1}{4})^{x}+(\frac{1}{2})^{x}+a≥0$,
解得$(\frac{1}{2})^{x}≤\frac{-1-\sqrt{1-4a}}{2}$(舍)或$(\frac{1}{2})^{x}≥\frac{-1+\sqrt{1-4a}}{2}$,
∵f(x)的定义域是(-∞,1],
∴x=$lo{g}_{\frac{1}{2}}\frac{-1+\sqrt{1-4a}}{2}=1$,解得:a=$-\frac{3}{4}$.
∴实数a的值为$-\frac{3}{4}$.
点评 本题考查对数函数的定义域、不等式恒成立问题,考查换元法和转化思想,关键是区分f(x)在区间(-∞,1]有意义与f(x)的定义域是(-∞,1],是中档题也是易错题.
| A. | {0}?B | B. | {0}?B | C. | A?B | D. | B?A |
| A. | $\frac{1}{2}$ | B. | $\frac{2}{5}$ | C. | -$\frac{\sqrt{26}}{23}$ | D. | -$\frac{\sqrt{26}}{26}$ |