题目内容
设等差数列{an}的前n项和为Sn,公差d>0,若a2=2,a5=11.
(1)求数列{an}的通项公式;
(2)设bn=
(a≠0),若{bn}是等差数列且cn=2b2n,求实数a与
(b∈R)的值.
(1)求数列{an}的通项公式;
(2)设bn=
| Sn |
| n+a |
| lim |
| n→+∞ |
| c1+c2+…+cn |
| bn+1 |
(1)设等差数列{an}的通项为an=a1+(n-1)d,
由题得:a1+d=2,a1+4d=11,(2分)
解得:a1=-1,d=3,an=3n-4(4分)
(2)由(1)得:Sn=
(6分)
∴bn=
则b1=
,b2=
,b3=
,
∵{bn}是等差数列,
则
=
+
∴a=-
,bn=
(8分)
又∵cn=2b2n=23n
∴c1+c2+…+cn=
(8n-1)(10分)
故
=
=
(12分)
由题得:a1+d=2,a1+4d=11,(2分)
解得:a1=-1,d=3,an=3n-4(4分)
(2)由(1)得:Sn=
| n(3n-5) |
| 2 |
∴bn=
| n(3n-5) |
| 2(n+a) |
则b1=
| -1 |
| 1+a |
| 1 |
| 2+a |
| 6 |
| 3+a |
∵{bn}是等差数列,
则
| 2 |
| 2+a |
| -1 |
| 1+a |
| 6 |
| 3+a |
∴a=-
| 5 |
| 3 |
| 3n |
| 2 |
又∵cn=2b2n=23n
∴c1+c2+…+cn=
| 8 |
| 7 |
故
| lim |
| n→+∞ |
| c1+c2+…+cn |
| bn+1 |
| ||
| bn+1 |
|
练习册系列答案
相关题目