题目内容

已知数列{an}中,a1=2,
an+1
2n+1
=
an
2n
+3,
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和.
分析:(1)由
an+1
2n+1
=
an
2n
+3,知
an+1
2n+1
-
an
2n
=3,由此能求出an=(3n-2)•2n
(2)由an=(3n-2)•2n,知数列{an}的前n项和:Tn=(3-2)•2+(3×2-2)•22+(3×3-2)•23+…+(3n-2)•3n,由此利用错位相减法能够求出Tn
解答:解:(1)∵
an+1
2n+1
=
an
2n
+3,
an+1
2n+1
-
an
2n
=3,
∵a1=2,∴{
an
2n
}是以
a1
21
=1为首项,以3为公差的等差数列,
an
2n
=1+(n-1)×3=3n-2,
∴an=(3n-2)•2n
(2)∵an=(3n-2)•2n
∴数列{an}的前n项和:
Tn=(3-2)•2+(3×2-2)•22+(3×3-2)•23+…+(3n-2)•3n,①
2Tn=(3-2)•22+(3×2-2)•23+(3×3-2)•24+…+(3n-2)•3n+1,②
①-②,得-Tn=2+3•22+3•23+3•24+…+3•2n-(3n-2)•3n+1
=2+3×
4(1-2n-2)
1-2
-(3n-2)•3n+1
=2+3(2n-4)-(3n-2)•3n+1
=3•2n-10-(3n-2)•3n+1
∴Tn=(3n-2)•3n+1-3•2n+10.
点评:本题考查数列的通项公式的求法,考查数列的前n项和公式的求法,解题时要认真审题,仔细解答,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网