题目内容
已知数列{an}中,a1=2,
=
+3,
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和.
| an+1 |
| 2n+1 |
| an |
| 2n |
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和.
分析:(1)由
=
+3,知
-
=3,由此能求出an=(3n-2)•2n.
(2)由an=(3n-2)•2n,知数列{an}的前n项和:Tn=(3-2)•2+(3×2-2)•22+(3×3-2)•23+…+(3n-2)•3n,由此利用错位相减法能够求出Tn.
| an+1 |
| 2n+1 |
| an |
| 2n |
| an+1 |
| 2n+1 |
| an |
| 2n |
(2)由an=(3n-2)•2n,知数列{an}的前n项和:Tn=(3-2)•2+(3×2-2)•22+(3×3-2)•23+…+(3n-2)•3n,由此利用错位相减法能够求出Tn.
解答:解:(1)∵
=
+3,
∴
-
=3,
∵a1=2,∴{
}是以
=1为首项,以3为公差的等差数列,
∴
=1+(n-1)×3=3n-2,
∴an=(3n-2)•2n.
(2)∵an=(3n-2)•2n,
∴数列{an}的前n项和:
Tn=(3-2)•2+(3×2-2)•22+(3×3-2)•23+…+(3n-2)•3n,①
2Tn=(3-2)•22+(3×2-2)•23+(3×3-2)•24+…+(3n-2)•3n+1,②
①-②,得-Tn=2+3•22+3•23+3•24+…+3•2n-(3n-2)•3n+1
=2+3×
-(3n-2)•3n+1
=2+3(2n-4)-(3n-2)•3n+1
=3•2n-10-(3n-2)•3n+1,
∴Tn=(3n-2)•3n+1-3•2n+10.
| an+1 |
| 2n+1 |
| an |
| 2n |
∴
| an+1 |
| 2n+1 |
| an |
| 2n |
∵a1=2,∴{
| an |
| 2n |
| a1 |
| 21 |
∴
| an |
| 2n |
∴an=(3n-2)•2n.
(2)∵an=(3n-2)•2n,
∴数列{an}的前n项和:
Tn=(3-2)•2+(3×2-2)•22+(3×3-2)•23+…+(3n-2)•3n,①
2Tn=(3-2)•22+(3×2-2)•23+(3×3-2)•24+…+(3n-2)•3n+1,②
①-②,得-Tn=2+3•22+3•23+3•24+…+3•2n-(3n-2)•3n+1
=2+3×
| 4(1-2n-2) |
| 1-2 |
=2+3(2n-4)-(3n-2)•3n+1
=3•2n-10-(3n-2)•3n+1,
∴Tn=(3n-2)•3n+1-3•2n+10.
点评:本题考查数列的通项公式的求法,考查数列的前n项和公式的求法,解题时要认真审题,仔细解答,注意错位相减法的合理运用.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|