题目内容
【题目】已知函数
,
.
(I)求
的单调区间;
(II)若对任意的
,都有
,求实数
的取值范围.
【答案】解:(I)
, 当
时,
恒成立,则
在
上单调递增;当
时,令
,则
.则
在区间
上单调递增,在区间
上单调递减.
(II)
,
等价于
.令
,则
.
令
,则
.
因为当
,
恒成立,
所以
在
上单调递减.
又
,可得
和
在
上的情况如下:
|
|
|
|
| + | 0 | - |
| 单调递增 | 单调递减 |
所以
在
上的最大值为
.
因此
,
等价于
.
故
,
时,实数
的取值范围是
.
【解析】(1)根据题意求出导函数利用导函数的性质即可得到原函数的单调性。(2)根据题意 x ∈ ( 0 , + ∞ ) , f ( x ) ≤ 2 a 2 等价
,构造函数 g ( x ),对其求导利用导函数的性质能求出 x ∈ ( 0 , + ∞ ) , f ( x ) ≤ 2 a 2 时,即可求出a的取值范围。
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减.
练习册系列答案
相关题目