题目内容
(08年长沙一中一模理)如图,已知几何体
中,
及
都是边长为2的等边三角形,四边形
为矩形,且
,
,O为AB中点.
(1)求证:
平面
;
(2)若M为CD中点,
,则当
取何值时,使AM与平面ABEF所成角为
?试求相应的
值.
![]()
解析:(1)因为
为等边三角形,O为AB中点,故
,又
,在矩形ABEF中
,所以
.
由
,证得
平面![]()
(2)设I为EF的中点,连接OI,依题意,四边形OIDC为等腰梯形;
在梯形OIDC中过O作
,垂足为H,过M作
,则
,由(1)可知:面
面
.
因为面
面
,所以
面
.
连接AG,则
等于直线AM与平面ABEF所成的角.
因为在正三角形
中,
在等腰梯形
中,![]()
所以在直角三角形
中,
即
;
在直角三角形
中,
,
由
.
练习册系列答案
相关题目