题目内容
已知椭圆![]()
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过点
(2,0)的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(O为坐标原点),当
<
时,求实数
取值范围.
解:(Ⅰ)由题意知
, 所以
.
即
.····································································································· 2分
又因为
,所以
,
.
故椭圆
的方程为
.····································································· 4分
(Ⅱ)由题意知直线
的斜率存在.
设
:
,
,
,
,
由
得
.
,
.······················································ 6分
,
.
∵
,∴
,
,
.
∵点
在椭圆上,∴
,
∴
.··························································································· 8分
∵
<
,∴
,∴![]()
∴
,
∴
,∴
.······························································ 10分
∴
,∵
,∴
,
∴
或
,
∴实数
取值范围为
.···················································· 12分
(注意:可设直线方程为
,但需要讨论
或
两种情况)
练习册系列答案
相关题目
已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为( )
A、
| ||||
B、
| ||||
C、
| ||||
| D、以上均不对 |
已知椭圆的离心率为
,焦点是(-3,0),(3,0),则椭圆方程为( )
| 1 |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|