题目内容
甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为
,乙获胜的概率为
,现已赛完两局,乙暂时以2∶0领先.
(1)求甲获得这次比赛胜利的概率;
(2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.
(1)求甲获得这次比赛胜利的概率;
(2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.
(1) 甲获得这次比赛胜利的概率为
;(2) X的概率分布为:
.
| X | 4 | 5 | 6 | 7 |
| P | ? | ? | ? | ? |
试题分析:(1)甲获得这次比赛胜利情况有二,一是比赛六局结束,甲连续赢了四局,一是比赛了七局,甲在后五局中赢了四局,且最后一局是甲赢,显然这两种情况彼此互斥,故分别计算出这两个事件的概率,求其和即得甲获得这次比赛胜利的概率.(2)设比赛结束时比赛的局数为
试题解析:(1)设甲获胜为事件A,则甲获胜包括甲以4∶2获胜和甲以4∶3获胜两种情况.
设甲以4∶2获胜为事件A1,则
设甲以4∶3获胜为事件A2,则
P(A)=
(2)随机变量
X的概率分布为:
| X | 4 | 5 | 6 | 7 |
| P | ? | ? | ? | ? |
练习册系列答案
相关题目