题目内容
计算下列各题
(1);
(2)
如图,在体积为2的三棱锥侧棱AB、AC、AD上分别取点E、F、G使,记O为三平面BCG、CDE、DBF的交点,则三棱锥的体积等于( )
A. B. C. D.
已知定义在上的函数满足,当时,,且.
(Ⅰ)求的值;
(Ⅱ)当时,关于的方程有解,求的取值范围.
已知抛物线上点到焦点的距离为4.
(1)求抛物线方程;
(2)点为准线上任意一点,为抛物线上过焦点的任意一条弦(如图),设直线,,的斜率为,,,问是否存在实数,使得恒成立.若存在,请求出的值;若不存在,请说明理由.
在△中,角,,所对的边分别为,,,表示△的面积,若,,则 .
已知函数
(1)若曲线在处的切线与x轴平行,求函数的单调区间;
(2)当的最大值大于时,求a的取值范围.
如图,抛物线和圆,其中,直线经过的焦点,依次交、于四点,则的值为__________.
已知平面α外不共线的三点A、B、C到平面α的距离相等,则正确的结论是( )
A.平面ABC必平行于α
B.平面ABC必不垂直于α
C.平面ABC必与α相交
D.存在△ABC的一条中位线平行于α或在α内
2014年11月10日APEC会议在北京召开,某服务部需从大学生中招收志愿者,被招收的志愿者需参加笔试和面试两部分,把参加笔试的60名大学生按成绩分组:第1组[75,80)有3人,第2组[80,85)有21人,第3组[85,90)有18人,第4组[90,95)有12人,第5组[95,100)有6人
(1)现决定在笔试成绩较高的第3、4、5组中用分层抽样抽取12人进行面试,则第3、4、5组各抽取多少人?
(2)已知甲和乙的成绩均在第5组,在(1)的条件下,求甲、乙至少有1人进入面试的概率.