题目内容
深化拓展:求cot10°-4cos10°的值.分析:通过和差化积,把非特殊角转化成特殊角把原式化简,最后约分得出答案.
解答:提示:cot10°-4cos10°
=
-4cos10°
=
=
=
=
=
=
故答案:
=
| cos10° |
| sin10° |
=
| cos10°-2sin20° |
| sin10° |
=
| cos(30°-20°)-2sin20° |
| sin10° |
=
| ||||||
| sin10° |
=
| ||||||
| sin10° |
=
| ||
| sin10° |
=
| 3 |
故答案:
| 3 |
点评:本题主要考查了余弦函数两角的和差问题.做题的关键是把非特殊角,化为特殊角或非特殊角,互相抵消、约分求出值.
练习册系列答案
相关题目