题目内容
【题目】(本小题满分14分)一种画椭圆的工具如图1所示.
是滑槽
的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且
,
.当栓子D在滑槽AB内作往复运动时,带动N绕
转动,M处的笔尖画出的椭圆记为C.以
为原点,
所在的直线为
轴建立如图2所示的平面直角坐标系.
![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动直线
与两定直线
和
分别交于
两点.若直线
总与椭圆
有且只有一个公共点,试探究:
的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
【答案】(Ⅰ)
(Ⅱ)当直线
与椭圆
在四个顶点处相切时,
的面积取得最小值8.
【解析】
(Ⅰ)因为
,当
在x轴上时,等号成立;同理
,当
重合,即
轴时,等号成立. 所以椭圆C的中心为原点
,长半轴长为
,短半轴长为
,其方程为![]()
(Ⅱ)(1)当直线
的斜率不存在时,直线
为
或
,都有
.
(2)当直线
的斜率存在时,设直线
, 由
消去
,可得
.因为直线
总与椭圆
有且只有一个公共点,所以
,即
. ①
又由
可得
;同理可得
.由原点
到直线
的距离为
和
,可得
. ②
将①代入②得,
. 当
时,
;当
时,
.因
,则
,
,所以
,当且仅当
时取等号.所以当
时,
的最小值为8.
综合(1)(2)可知,当直线
与椭圆
在四个顶点处相切时,
的面积取得最小值8.
【题目】某工厂每年定期对职工进行培训以提高工人的生产能力(生产能力是指一天加工的零件数).现有
、
两类培训,为了比较哪类培训更有利于提高工人的生产能力,工厂决定从同一车间随机抽取100名工人平均分成两个小组分别参加这两类培训.培训后测试各组工人的生产能力得到如下频率分布直方图.
![]()
(1)记
表示事件“参加
类培训工人的生产能力不低于130件”,估计事件
的概率;
(2)填写下面列联表,并根据列联表判断是否有
的把握认为工人的生产能力与培训类有关:
生产能力 | 生产能力 | 总计 | |
| 50 | ||
| 50 | ||
总计 | 100 |
(3)根据频率分布直方图,判断哪类培训更有利于提高工人的生产能力,请说明理由.
参考数据
| 0.15 | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:
,其中
.
【题目】某餐厅通过查阅了最近5次食品交易会参会人数
(万人)与餐厅所用原材料数量
(袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数 | 13 | 9 | 8 | 10 | 12 |
原材料 | 32 | 23 | 18 | 24 | 28 |
(1)根据所给5组数据,求出
关于
的线性回归方程
.
(2)已知购买原材料的费用
(元)与数量
(袋)的关系为
,
投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润
销售收入
原材料费用).
参考公式:
,
.
参考数据:
,
,
.