题目内容
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足
+
+…+
=
,n∈N*,求{bn}的通项公式;
(3)求数列{bn}前n项和Tn.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
| 2n-1 |
| 2n |
(3)求数列{bn}前n项和Tn.
分析:(1)利用S4=4S2,a2n=2an+1,组成方程组,求出首项与公差,即可求数列{an}的通项公式;
(2)利用条件再写一式,两式相减,结合(1)的结论,即可求{bn}的通项公式;
(3)利用错位相减法,可求数列{bn}前n项和Tn.
(2)利用条件再写一式,两式相减,结合(1)的结论,即可求{bn}的通项公式;
(3)利用错位相减法,可求数列{bn}前n项和Tn.
解答:解:(1)设等差数列{an}的公差为d,
由S4=4S2,a2n=2an+1得
----(2分)
解得a1=1,d=2-----(4分)
∴an=2n-1,n∈N*----(5分)(注:不写n∈N*扣1分)
(2)由已知
+
+…+
=1-
,n∈N*,---①
当n=1时,
=
,n∈N*;---(6分)
当n≥2时,
+
+…+
=1-
,---②
将①-②,得
=1-
-(1-
)=
(n≥2),----(7分)
∴
=
(n≥2),
由(1)知an=2n-1,n∈N*,∴bn=
(n≥2)------(8分)
∴检验n=1,b1=
•1=
,符合,
∴bn=
(n∈N*)---(9分)
(3)由已知得Tn=
+
+…+
----③,
Tn=
+
…+
+
----④----(10分)
将③-④,得,
Tn=
+2(
+
+…+
)-
=
-
-
-----13
∴Tn=3-
----(14分)
由S4=4S2,a2n=2an+1得
|
解得a1=1,d=2-----(4分)
∴an=2n-1,n∈N*----(5分)(注:不写n∈N*扣1分)
(2)由已知
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
| 1 |
| 2n |
当n=1时,
| b1 |
| a1 |
| 1 |
| 2 |
当n≥2时,
| b1 |
| a1 |
| b2 |
| a2 |
| bn-1 |
| an-1 |
| 1 |
| 2n-1 |
将①-②,得
| bn |
| an |
| 1 |
| 2n |
| 1 |
| 2n-1 |
| 1 |
| 2n |
∴
| bn |
| an |
| 1 |
| 2n |
由(1)知an=2n-1,n∈N*,∴bn=
| 2n-1 |
| 2n |
∴检验n=1,b1=
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=
| 2n-1 |
| 2n |
(3)由已知得Tn=
| 1 |
| 2 |
| 3 |
| 22 |
| 2n-1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2n+1 |
将③-④,得,
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 2n-1 |
| 2n+1 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
∴Tn=3-
| 2n+3 |
| 2n |
点评:本题考查数列的通项与求和,考查错位相减法的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目