题目内容
已知tan(
+α)=
.
(Ⅰ)求tanα的值;
(Ⅱ)求
的值.
| π |
| 4 |
| 1 |
| 2 |
(Ⅰ)求tanα的值;
(Ⅱ)求
| sin2α-cos2α |
| 1+cos2α |
(Ⅰ)tan(
+α)=
=
,
由tan(
+α)=
,有
=
,解得tanα=-
;
(Ⅱ)解法一:
=
=
=tanα-
=-
-
=
.
解法二:由(1),tanα=-
,得sinα=-
cosα
∴sin2α=
cos2α1-cos2α=
cos2α,∴cos2α=
于是cos2α=2cos2α-1=
,
sin2α=2sinαcosα=-
cos2α=-
代入得
=
=-
.
| π |
| 4 |
tan
| ||
1-tan
|
| 1+tanα |
| 1-tanα |
由tan(
| π |
| 4 |
| 1 |
| 2 |
| 1+tanα |
| 1-tanα |
| 1 |
| 2 |
| 1 |
| 3 |
(Ⅱ)解法一:
| sin2α-cos2α |
| 1+cos2α |
| 2sinαcosα-cos2α |
| 1+2cos2α-1 |
=
| 2sinα-cosα |
| 2cosα |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 6 |
解法二:由(1),tanα=-
| 1 |
| 3 |
| 1 |
| 3 |
∴sin2α=
| 1 |
| 9 |
| 1 |
| 9 |
| 9 |
| 10 |
于是cos2α=2cos2α-1=
| 4 |
| 5 |
sin2α=2sinαcosα=-
| 2 |
| 3 |
| 3 |
| 5 |
代入得
| sin2α-cos2α |
| 1+cos2α |
-
| ||||
1+
|
| 5 |
| 6 |
练习册系列答案
相关题目