题目内容
数列中,,对所有的正整数,都有,则等于( ). . . .
A
解析
已知数列中,,其前项和满足:,令
.
(1) 求数列的通项公式;
(2) 若,求证:;
(3) 令,问是否存在正实数同时满足下列两个条件?
①对任意,都有;
②对任意的,均存在,使得当时总有.
若存在,求出所有的; 若不存在,请说明理由.