题目内容
数列{an}的前n项和为Sn,且满足Sn=2(an-1),数列{bn}中,b1=1,且点P(bn,bn+1)在直线x-y+2=0上,(1)求数列{an}、{bn}的通项公式;
(2)设Hn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bn-1bn |
| m |
| 30 |
(3)设Tn=
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
分析:(1)利用数列中an与 Sn关系an=
求{an}的通项公式;点P(bn,bn+1)代入直线x-y+2=0方程,易知{bn}为等差数列.
(2)将bn=2n-1代入Hn,易知用裂项法计算Hn,只需
大于Hn的最大值即可.
(3)Tn可看做是等差数列与等比数列对应项相乘后相加,可用错位相消法化简计算,后与3比较即可.
|
(2)将bn=2n-1代入Hn,易知用裂项法计算Hn,只需
| m |
| 30 |
(3)Tn可看做是等差数列与等比数列对应项相乘后相加,可用错位相消法化简计算,后与3比较即可.
解答:解:(1)∵Sn=2(an-1),∴Sn+1=2(an+1-1)
两式相减得:an+1=2an+1-2an?
=2,又∵a1=2
∴{an}是以2为首项,以2为公比的等比数列,∴an=2n
又P(bn,bn+1)在直线x-y+2=0上,
∴bn-bn+1+2=0?bn+1-bn=2,
又∵b1=1,∴}、{bn}是以1为首项,以2为公差的等差数列,∴bn=2n-1
(2)
=
=
(
-
)
∴Hn=
+
+…+
=
(1-
)
要使
(1-
)<
所有的n∈N*都成立,必须且仅需满足
≤
?m≥15
所以满足要求的最小正整数为15,
(3)Tn=
+
+
+…+
Tn=
+
+
+…+
相减得:
Tn=
+(
+
+…+
)-
化简得Tn=3-
-
<3
所以Tn<3
两式相减得:an+1=2an+1-2an?
| an+1 |
| an |
∴{an}是以2为首项,以2为公比的等比数列,∴an=2n
又P(bn,bn+1)在直线x-y+2=0上,
∴bn-bn+1+2=0?bn+1-bn=2,
又∵b1=1,∴}、{bn}是以1为首项,以2为公差的等差数列,∴bn=2n-1
(2)
| 1 |
| bn-1bn |
| 1 |
| (2n-3)(2n-1) |
| 1 |
| 2 |
| 1 |
| 2n-3 |
| 1 |
| 2n-1 |
∴Hn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bn-1bn |
| 1 |
| 2 |
| 1 |
| 2n-1 |
要使
| 1 |
| 2 |
| 1 |
| 2n-1 |
| m |
| 30 |
| 1 |
| 2 |
| m |
| 30 |
所以满足要求的最小正整数为15,
(3)Tn=
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 5 |
| 24 |
| 2n-1 |
| 2n+1 |
相减得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
化简得Tn=3-
| 1 |
| 2n-2 |
| 2n-1 |
| 2n |
所以Tn<3
点评:本题考查数列通项公式求解,裂项法、错位相消法数列求和,数列的函数性质,不等式的证明.考查综合运用知识分析解决问题,计算等能力.
练习册系列答案
相关题目