题目内容
设
,
均为单位向量,且
,
的夹角为60°,|
+
+
|=1则,则|
|的取值范围是 .
| a |
| b |
| a |
| b |
| c |
| a |
| b |
| c |
分析:由题意可得|
+
|=
,可得|
|=|(
+
+
)-(
+
)|,由三角不等式可得答案.
| a |
| b |
| 3 |
| c |
| c |
| a |
| b |
| a |
| b |
解答:解:∵(
+
)2=
2+2
•
+
2=1+2×1×1×cos60°+1=3,
∴|
+
|=
,∴|
|=|(
+
+
)-(
+
)|,
由三角不等式可得||
+
+
|-|
+
||≤|(
+
+
)-(
+
)|≤|
+
+
|+|
+
|
∴
-1≤|(
+
+
)-(
+
)|≤
+1
∴|
|的取值范围是:[
-1,
+1]
故答案为::[
-1,
+1]
| a |
| b |
| a |
| a |
| b |
| b |
∴|
| a |
| b |
| 3 |
| c |
| c |
| a |
| b |
| a |
| b |
由三角不等式可得||
| c |
| a |
| b |
| a |
| b |
| c |
| a |
| b |
| a |
| b |
| c |
| a |
| b |
| a |
| b |
∴
| 3 |
| c |
| a |
| b |
| a |
| b |
| 3 |
∴|
| c |
| 3 |
| 3 |
故答案为::[
| 3 |
| 3 |
点评:本题考查平面向量的数量积和模长,涉及三角不等式的应用,属中档题.
练习册系列答案
相关题目