题目内容
已知数列{an}的首项为2,点(an,an+1)在函数y=x+2的图象上(1)求数列{an}的通项公式;
(2)设数列{an}的前n项之和为Sn,求证
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
分析:(1)点(an,an+1)代入直线方程可得an+1=an+2,则数列为等差数列,根据首项为2,公比为2写出通项公式即可;
(2)根据首项和公比写出等差数列的前n项和的公式sn,并表示出
=
=
-
,,利用拆项法把
变为
-
,然后列举出各项,抵消可得证.
(2)根据首项和公比写出等差数列的前n项和的公式sn,并表示出
| 1 |
| sn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)点(an,an+1)在函数y=x+2的图象上,∴an+1=an+2,
∴数列{an}是以首项为2公差为2的等差数列,
∴an=2+2(n-1)=2n;
(2)sn=
=n(n+1),
则
=
=
-
,
∴
+
+
+…+
=(1-
)+(
-
)+…+(
-
)=1-
<1
∴数列{an}是以首项为2公差为2的等差数列,
∴an=2+2(n-1)=2n;
(2)sn=
| (2n+2)n |
| 2 |
则
| 1 |
| sn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
点评:此题以一次函数为平台,考查等差数列的通项公式及前n项的和,是一道中档题.学生证明时应注意运用拆项法进行化简.
练习册系列答案
相关题目