题目内容
1.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA-sinB)=(c-b)sinC.(Ⅰ)若b=2,求c边的长;
(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.
分析 ( I) 由正弦定理化简已知可得a2-b2=c2-bc,代入a=2,b=2,即可解得c的值.
(II) 由(I)可求cosA=$\frac{1}{2}$,可求A=60°,又由基本不等式可得bc≤4,利用三角形面积公式即可得解.
解答 解:( I) 由正弦定理得:(a+b)(a-b)=(c-b)c,即a2-b2=c2-bc--------(3分)
因为a=2且b=2,所以解得:c=2.---------------------(5分)
(II) 由(I)知 $cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{1}{2}$,则A=60°------------------(7分)
因为a=2,
∴b2+c2-bc=4≥2bc-bc=bc,------------------(10分)
∴${S_{△ABC}}=\frac{1}{2}bcsinA≤\frac{1}{2}•4•sin{60°}=\sqrt{3}$,此时三角形是正三角形---(12分)
点评 本题主要考查了正弦定理,余弦定理,基本不等式及三角形面积公式的应用,考查了计算能力,属于中档题.
练习册系列答案
相关题目
1.若sin$\frac{α}{2}$=$\frac{1}{2}$,则cosα等于 ( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | ±$\frac{1}{2}$ | D. | ±$\frac{\sqrt{3}}{2}$ |
9.在极坐标系中,直线l:θ=$\frac{π}{4}$(ρ∈R)和圆C:ρ=1的位置关系是( )
| A. | 相切 | B. | 相交且直线过圆心 | ||
| C. | 相交且直线不过圆心 | D. | 相离 |
10.已知复数z满足($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)•z=1+i(其中i为虚数单位),则|z|为( )
| A. | 2 | B. | $\sqrt{2}$ | C. | 2($\sqrt{3}$+1) | D. | 2($\sqrt{3}$-1) |