题目内容

精英家教网已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为PD中点.
(1)证明平面PED⊥平面PAB;
(2)求二面角P-AB-F的平面角的余弦值.
分析:(1)先由已知条件证明∴△ADB为等边三角形,AB⊥DE,易证AB⊥PD,得到AB⊥面PED,进而证明面PED⊥面PAB.
(2)先由二面角的定义找出二面角的平面角,把二面角的平面角放在一个三角形中,求出此角的余弦值.
解答:精英家教网(1)证明:连接BD.∵AB=AD,∠DAB=60°,∴△ADB为等边三角形.
∵E是AB中点,∴AB⊥DE.(2分)∵PD⊥面ABCD,AB?面ABCD,∴AB⊥PD.
∵DE?面PED,PD?面PED,DE∩PD=D,∴AB⊥面PED. (4分)
∵AB?面PAB,∴面PED⊥面PAB.  (6分)

(2)解:∵AB⊥平面PED,PE?面PED,∴AB⊥PE.
连接EF,∵EF?PED,∴AB⊥EF.∴∠PEF为二面角P-AB-F的平面角.(9分)
设AD=2,那么PF=FD=1,DE=
3

在△PEF中,PE=
7
,EF=2,PF=1

cos∠PEF=
(
7
)
2
+22-1
2×2
7
=
5
7
14

即二面角P-AB-F的平面角的余弦值为
5
7
14
.
(12分)
点评:本小题主要考查空间中的线面关系,四棱锥的有关概念及余弦定理等基础知识,考查空间想象能力和推理能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网