题目内容
已知三棱柱ABC—A1B1C1,在某个空间直解坐标系中,(1)证明三棱柱ABC—A1B1C1是正三棱柱;
(2)若m=
n,求直线CA1与平面A1ABB1所成解的大小.
(1)证明:
=
-
=(m,0,0)-(
,-
,0)
=(
,
,0),
|
|=|
|=|
|=m,
![]()
∴△ABC为正三角形.
又
·
=0,
·
=0,
∴AA1⊥AB,AA1⊥AC.
又AB∩AC=A,∴AA1⊥平面ABC.
∴三棱术ABC—A1B1C1是正三棱柱.
(2)解:作CD⊥AB于D,连结A1D.
![]()
∵AA1⊥平面ABC,∴面AA1B1B⊥平面ABC.
∴CD⊥平面AA1B1B.
因此A1D为斜线A1C在平面AA1B1B上的射影.
∠CA1D为直线CA1与平面AA1B1B所成的角.
在Rt△CDA1中,CD=
m,
A1D=
=
.
tan∠CA1D=
=
=
.
又m=
n,
∴tan∠CA1D=
=1.
又0<∠CA1D<
,
∴∠CA1D=45°.
练习册系列答案
相关题目