题目内容
△ABC中,内角为A,B,C,所对的三边分别是a,b,c,已知b2=ac,cosB=
.
(1)求
+
的值;
(2)设
•
=
,求a+c的值.
| 3 |
| 4 |
(1)求
| 1 |
| tanA |
| 1 |
| tanC |
(2)设
| BA |
| BC |
| 3 |
| 2 |
(1)∵b2=ac,
∴由正弦定理得:sin2B=sinAsinC,
又cosB=
,且B为三角形的内角,
∴sinB=
=
,又sin(A+C)=sinB,
∴
+
=
+
=
=
=
=
=
;
(2)∵
•
=
,cosB=
,
∴ac•cosB=
ac=
,即ac=2,
∴b2=ac=2,
∴cosB=
=
=
=
=
,
∴(a+c)2=9,
则a+c=3.
∴由正弦定理得:sin2B=sinAsinC,
又cosB=
| 3 |
| 4 |
∴sinB=
| 1-cos2B |
| ||
| 4 |
∴
| 1 |
| tanA |
| 1 |
| tanC |
| cosA |
| sinA |
| cosC |
| sinC |
| sinCcosA+cosCsinA |
| sinAsinC |
| sin(A+C) |
| sinAsinC |
| sinB |
| sin2B |
| 1 |
| sinB |
4
| ||
| 7 |
(2)∵
| BA |
| BC |
| 3 |
| 2 |
| 3 |
| 4 |
∴ac•cosB=
| 3 |
| 4 |
| 3 |
| 2 |
∴b2=ac=2,
∴cosB=
| a2+c2-b2 |
| 2ac |
| a2+c2-2 |
| 4 |
| (a+c)2-2ac-2 |
| 4 |
| (a+c)2-6 |
| 4 |
| 3 |
| 4 |
∴(a+c)2=9,
则a+c=3.
练习册系列答案
相关题目