题目内容

求函数y=
sin3xsin3x+cos3xcos3xcos22x
+sin2x
的最小值.
分析:先由积化和差公式入手,再利用倍角公式、同角正余弦关系式进行整理,最后把原函数转化为y=Asin(ωx+φ)的基本形式,则最值解决.
解答:解:sin3xsin3x+cos3xcos3x
=(sin3xsinx)sin2x+(cos3xcosx)cos2x
=
1
2
[(cos2x-cos4x)sin2x+(cos2x+cos4x)cos2x]
=
1
2
[(sin2x+cos2x)cos2x+(cos2x-sin2x)cos4x]
=
1
2
(cos2x+cos2xcos4x)
=
1
2
cos2x(1+cos4x)
=cos32x
所以y=
cos32x
cos22x
+sin2x

=cos2x+sin2x
=
2
sin(2x+
π
4
).
所以当sin(2x+
π
4
)=-1时,y取最小值-
2
点评:本题考查利用有关三角公式求三角函数最值的方法及运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网