题目内容
求函数y=| sin3xsin3x+cos3xcos3x | cos22x |
分析:先由积化和差公式入手,再利用倍角公式、同角正余弦关系式进行整理,最后把原函数转化为y=Asin(ωx+φ)的基本形式,则最值解决.
解答:解:sin3xsin3x+cos3xcos3x
=(sin3xsinx)sin2x+(cos3xcosx)cos2x
=
[(cos2x-cos4x)sin2x+(cos2x+cos4x)cos2x]
=
[(sin2x+cos2x)cos2x+(cos2x-sin2x)cos4x]
=
(cos2x+cos2xcos4x)
=
cos2x(1+cos4x)
=cos32x
所以y=
+sin2x
=cos2x+sin2x
=
sin(2x+
).
所以当sin(2x+
)=-1时,y取最小值-
.
=(sin3xsinx)sin2x+(cos3xcosx)cos2x
=
| 1 |
| 2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
=cos32x
所以y=
| cos32x |
| cos22x |
=cos2x+sin2x
=
| 2 |
| π |
| 4 |
所以当sin(2x+
| π |
| 4 |
| 2 |
点评:本题考查利用有关三角公式求三角函数最值的方法及运算能力.
练习册系列答案
相关题目