题目内容
设φ∈(0,
),函数f(x)=sin2(x+φ),且f(
)=
.
(Ⅰ)求φ的值;
(Ⅱ)若x∈[0,
],求f(x)的最大值及相应的x值.
| π |
| 4 |
| π |
| 4 |
| 3 |
| 4 |
(Ⅰ)求φ的值;
(Ⅱ)若x∈[0,
| π |
| 2 |
(Ⅰ)∵f(
)=sin2(
+φ)=
[1-cos(
+2φ)]=
(1+sin2φ)=
,∴sin2φ=
(4分)
∵φ∈(0,
),∴2φ∈(0,
),∴2φ=
,φ=
.(6分)
(Ⅱ)由(Ⅰ)得f(x)=sin2(x+
)=-
cos(2x+
)+
(8分)
∵0≤x≤
,∴
≤2x+
≤
(9分)
当2x+
=π,即x=
时,cos(2x+
)取得最小值-1(11分)
∴f(x)在[0,
]上的最大值为1,此时x=
(12分)
| π |
| 4 |
| π |
| 4 |
| 1 |
| 2 |
| π |
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 2 |
∵φ∈(0,
| π |
| 4 |
| π |
| 2 |
| π |
| 6 |
| π |
| 12 |
(Ⅱ)由(Ⅰ)得f(x)=sin2(x+
| π |
| 12 |
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
∵0≤x≤
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
当2x+
| π |
| 6 |
| 5π |
| 12 |
| π |
| 6 |
∴f(x)在[0,
| π |
| 2 |
| 5π |
| 12 |
练习册系列答案
相关题目
设θ∈(0,
),则二次曲线x2ctgθ-y2tgθ=1的离心率取值范围( )
| π |
| 4 |
A、(0,
| ||||||
B、(
| ||||||
C、(
| ||||||
D、(
|