题目内容

在边长为1的正三角形ABC中,
BD
=x
BA
CE
=y
CA
,x>0,y>0,且x+y=1,则
CD
BE
的最大值为(  )
分析:根据
BD
=x
BA
CE
=y
CA
,可得
CD
BE
=(
CB
+
BD
)•(
BC
+
CE
)
=(
CB
+x
BA
)•(
BC
+y
CA
)
=-1+
x+y+xy
2
,利用x>0,y>0,且x+y=1,可求
CD
BE
的最大值.
解答:解:由题意,
CD
BE
=(
CB
+
BD
)•( 
BC
+
CE
)

BD
=x
BA
CE
=y
CA

CD
BE
=(
CB
+
BD
)•(
BC
+
CE
)
=(
CB
+x
BA
)•(
BC
+y
CA
)
=-1+
x+y+xy
2

∵x>0,y>0,且x+y=1
∴xy≤
1
4

∴-1+
x+y+xy
2
=-1+
1+xy
2
-
3
8

当且仅当x=y=
1
2
时,取等号
∴当x=y=
1
2
时,
CD
BE
的最大值为-
3
8

故选B
点评:本题考查向量知识的运用,考查向量的加法,考查向量的数量积,考查基本不等式的运用,综合性强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网