题目内容

1.在△ABC中,内角A、B、C所对的边分别为a、b、c,a=c且满足cosC+(cosA-$\sqrt{3}$sinA)cosB=0,则△ABC是(  )
A.钝角三角形B.等边三角形C.直角三角形D.不能确定

分析 利用三角函数恒等变换的应用化简已知等式可得sinAsinB=$\sqrt{3}$sinAcosB,由sinA≠0,可解得tanB=$\sqrt{3}$,结合范围B∈(0,π),可求B=$\frac{π}{3}$,由a=c及三角形内角和定理可得A=B=C=$\frac{π}{3}$,从而得解.

解答 解:∵cosC+(cosA-$\sqrt{3}$sinA)cosB=0,
⇒-cos(A+B)+cosAcosB-$\sqrt{3}$sinAcosB=0,
⇒-cosAcosB+sinAsinB+cosAcosB=$\sqrt{3}$sinAcosB,
⇒sinAsinB=$\sqrt{3}$sinAcosB,(sinA≠0)
⇒sinB=$\sqrt{3}$cosB,
⇒tanB=$\sqrt{3}$,
又∵B∈(0,π),
∴解得:B=$\frac{π}{3}$.
又∵a=c,即A=C,且A+B+C=π,
∴解得:A=B=C=$\frac{π}{3}$.三角形是等边三角形.
故选:B.

点评 本题主要考查了三角函数恒等变换的应用,考查了三角形内角和定理的应用,三角形形状的判定,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网