题目内容

已知函数f(x)=x2-4x+a+3,a∈R.
(Ⅰ)若函数y=f(x)的图象与x轴无交点,求a的取值范围;
(Ⅱ)若函数y=f(x)在[-1,1]上存在零点,求a的取值范围;
(Ⅲ)设函数g(x)=bx+5-2b,b∈R.当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.
分析:(Ⅰ)根据题意,可以将问题转化为二次函数对应的方程无实数根,利用△<0列出不等关系式,求解即可得到a的取值范围;
(Ⅱ)根据二次函数的对称轴为x=2,可以判断出二次函数在去甲[-1,1]上的单调性,再根据零点的存在性定理列出不等式组,求解即可得到a的取值范围;
(Ⅲ)根据题意,将问题转化为函数y=f(x)的值域为函数y=g(x)值域的子集,根据二次函数的性质,即可求得f(x)的值域,对于g(x),对其一次项系数进行分类讨论,分别得到g(x)的值域,分别求解,即可得到b的取值范围.
解答:解:(Ⅰ)∵函数y=f(x)的图象与x轴无交点,
∴方程f(x)=0的判别式△<0,
∴16-4(a+3)<0,解得a>1,
∴a的取值范围为(1,+∞);
(Ⅱ)∵f(x)=x2-4x+a+3的对称轴是x=2,
∴y=f(x)在[-1,1]上是减函数,
∵y=f(x)在[-1,1]上存在零点,
∴必有:
f(1)≤0
f(-1)≥0
,即
a≤0
a+8≥0

解得:-8≤a≤0,
故实数a的取值范围为-8≤a≤0;               
(Ⅲ)若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2),
只需函数y=f(x)的值域为函数y=g(x)值域的子集.
当a=0时,f(x)=x2-4x+3的对称轴是x=2,∴y=f(x)的值域为[-1,3],
下面求g(x)=bx+5-2b,x∈[1,4]的值域,
①当b=0时,g(x)=5,不合题意,舍
②当b>0时,g(x)=bx+5-2b的值域为[5-b,5+2b],只需要
5-b≤-1
5+2b≥3
,解得b≥6
③当b<0时,g(x)=bx+5-2b的值域为[5+2b,5-b],只需要
5+2b≤-1
5-b≥3
,解得b≤-3
综上:实数b的取值范围b≥6或b≤-3.
点评:本题考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.考查了二次函数的性质以及二次函数的零点与最值问题,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑.本题运用了分类讨论的数学思想方法.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网