题目内容
设函数f(x)=-x2+2x+a(0≤x≤3)的最大值为m,最小值为n,其中a≠0,a∈R.
(1)求m、n 的值(用a 表示);
(2)已知角β 的顶点与平面直角坐标系xoy 中的原点o 重合,始边与x 轴的正半轴重合,终边经过点A(m-1,n+3).求tan(β+
) 的值.
(1)求m、n 的值(用a 表示);
(2)已知角β 的顶点与平面直角坐标系xoy 中的原点o 重合,始边与x 轴的正半轴重合,终边经过点A(m-1,n+3).求tan(β+
| π |
| 3 |
(1)由题可得f(x)=-(x-1)2+1+a 而0≤x≤3,
所以,m=f(1)=1+a,
n=f(3)=a-3;
(2)角 β终边经过点A(a,a),则 tanβ=1,
所以,tan(β+
)=
=
=-2-
.
所以,m=f(1)=1+a,
n=f(3)=a-3;
(2)角 β终边经过点A(a,a),则 tanβ=1,
所以,tan(β+
| π |
| 3 |
tanβ+tan
| ||
1-tanβtan
|
1+
| ||
1-
|
| 3 |
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
| A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|