ÌâÄ¿ÄÚÈÝ
ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,FÊÇÅ×ÎïÏßC:x2=2py(p>0)µÄ½¹µã,MÊÇÅ×ÎïÏßCÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÈÎÒâÒ»µã,¹ýM,F,OÈýµãµÄÔ²µÄÔ²ÐÄΪQ,µãQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀëΪ
.
(1)ÇóÅ×ÎïÏßCµÄ·½³Ì;
(2)ÊÇ·ñ´æÔÚµãM,ʹµÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM?Èô´æÔÚ,Çó³öµãMµÄ×ø±ê;Èô²»´æÔÚ,˵Ã÷ÀíÓÉ.
(3)ÈôµãMµÄºá×ø±êΪ
,Ö±Ïßl:y=kx+
ÓëÅ×ÎïÏßCÓÐÁ½¸ö²»Í¬µÄ½»µãA,B,lÓëÔ²QÓÐÁ½¸ö²»Í¬µÄ½»µãD,E,Çóµ±
¡Ük¡Ü2ʱ,|AB|2+|DE|2µÄ×îСֵ.
£¨1£©x2=2y £¨2£©´æÔÚµãM(
,1) £¨3£©![]()
½âÎö½â:(1)ÒÀÌâÒâÖªF
,Ô²ÐÄQÔÚÏß¶ÎOFµÄ´¹Ö±Æ½·ÖÏßy=
ÉÏ,
ÒòΪÅ×ÎïÏßCµÄ×¼Ïß·½³ÌΪy=-
,
ËùÒÔ
=
,
¼´p=1.
Òò´ËÅ×ÎïÏßCµÄ·½³ÌΪx2=2y.
(2)¼ÙÉè´æÔÚµãM
(x0>0)Âú×ãÌõ¼þ,Å×ÎïÏßCÔÚµãM´¦µÄÇÐÏßбÂÊΪy¡ä
=![]()
=x0,
ËùÒÔÖ±ÏßMQµÄ·½³ÌΪy-
=x0(x-x0).
Áîy=
µÃxQ=
+
.
ËùÒÔQ£¨
+
,
£©.
ÓÖ|QM|=|OQ|,
¹Ê£¨
-
£©2+£¨
-
£©2=£¨
+
£©2+
,
Òò´Ë£¨
-
£©2=
.
ÓÖx0>0,
ËùÒÔx0=
,´ËʱM(
,1).
¹Ê´æÔÚµãM(
,1),
ʹµÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM.
(3)µ±x0=
ʱ,ÓÉ(2)µÃQ£¨
,
£©,
¨‘QµÄ°ë¾¶Îªr=
=
,
ËùÒÔ¨‘QµÄ·½³ÌΪ£¨x-
£©2+£¨y-
£©2=
.
ÓÉ![]()
ÕûÀíµÃ2x2-4kx-1=0.
ÉèA,BÁ½µãµÄ×ø±ê·Ö±ðΪ(x1,y1),(x2,y2),
ÓÉÓÚ¦¤1=16k2+8>0,x1+x2=2k,x1x2=-
,
ËùÒÔ|AB|2=(1+k2)[(x1+x2)2-4x1x2]
=(1+k2)(4k2+2).
ÓÉ![]()
ÕûÀíµÃ(1+k2)x2-
x-
=0.
ÉèD,EÁ½µãµÄ×ø±ê·Ö±ðΪ(x3,y3),(x4,y4),
ÓÉÓÚ¦¤2=
+
>0,x3+x4=
,
x3x4=-
.
ËùÒÔ|DE|2=(1+k2)[(x3+x4)2-4x3x4]
=
+
.
Òò´Ë|AB|2+|DE|2=(1+k2)(4k2+2)+
+
.
Áî1+k2=t,
ÓÉÓÚ
¡Ük¡Ü2,
Ôò
¡Üt¡Ü5,
ËùÒÔ|AB|2+|DE|2=t(4t-2)+
+![]()
=4t2-2t+
+![]()