题目内容
歌德巴赫(Goldbach.C.德.1690-1764)曾研究过“所有形如| 1 |
| (n+1)m+1 |
∑n-1φ∑m-1φ
| 1 |
| (n+1)m+1 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 34 |
| 1 |
| (n+1)2 |
| 1 |
| (n+1)3 |
| 1 |
| (n+1)4 |
分析:先分别求出=(
+
+
+…),(
+
+
+…)…的极限再代入∑n-1φ∑m-1φ
通过裂项法求得答案.
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 34 |
| 1 |
| (n+1)m+1 |
解答:解:∵
+
+
+…=
=
,
+
+
+…=
=
…
∴∑n-1φ∑m-1φ
=1-
+
-
+…+
-
…=1
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| ||
1-
|
| 1 |
| 2 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 34 |
| ||
1-
|
| 1 |
| 2×3 |
∴∑n-1φ∑m-1φ
| 1 |
| (n+1)m+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
点评:本题主要考查了用裂项法求和的问题.当出现
形式的数列求和时可用裂项法.
| 1 |
| n(n+1) |
练习册系列答案
相关题目