题目内容

已知定点A(0,1)、B(0,-1)、C(1,0),动点P满足:
AP
BP
=k|
PC
|2
(k∈R).
(1)求动点P的轨迹方程,并说明方程表示的图形;
(2)当k=2时,求|
AP
+
BP
|
的最大值和最小值.
( 1 )  设动点P的坐标为(x,y),则
AP
=(x,y-1),
BP
=(x,y+1)
PC
=(1-x,y)

AP
BP
=k|
PC
|2
,∴x2+y2-1=k[(x-1)2+y2],即(k-1)x2+(k-1)y2-2kx+k+1=0 
若k=1,,则方程为x=1,表示过点(1,0)且平行于y轴的直线;
若k≠1,则方程为(x+
k
1-k
2+y2=(
1
1-k
2,表示以(
k
1-k
,0)为圆心,以
1
|1-k|
为半径的圆;
( 2 ) 当k=2时,方程化为(x-2)2+y2=1,|
AP
+
BP
|
=|(2x,2y)|=2
x2+y2

令x=2+cosθ,y=sinθ,则|
AP
+
BP
|
=2
5+4cosθ

∴当cosθ=1时,|
AP
+
BP
|
的最大值为6,当cosθ=-1时,|
AP
+
BP
|
的最小值为2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网