题目内容

设函数f(x)=x+ln(x+),则对于任意实数a和b,a+b<0是f(a)+f(b)<0的        条件


  1. A.
    必要不充分
  2. B.
    充分不必要
  3. C.
    充要
  4. D.
    既不充分也不必要
C
考点:必要条件、充分条件与充要条件的判断;函数单调性的判断与证明;奇函数.
分析:由题设条件知对于任意的实数a和b,a+b<0?f(a)+f(b)<0;f(a)+f(b)<0?a+b<0.
解答:显然,函数f(x)=x+ln( )在R上是递增函数,而且是奇函数,于是,由a+b<0,得a<-b,有f(a)<f(-b)=-f(b),即f(a)+f(b)<0.反过来,也成立.故选C.
点评:本题考查充分条件、必要条件、充要条件的判断,解题时要注意函数单调性的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网